

Rensselaer Polytechnic Institute Ishwara Bhat

Company Information

- Educational Institution
- •Two epitaxial growth reactors, one vertical hot wall and one horizontal cold wall, capable of handling 2 inch diameter wafers
- •Complete Device processing and simulation capability

Area of Expertise

- •Epitaxial Growth of thick (>100μm) 4H-SiC
- •Continuous growth of epitaxial layers of p-on-n and n-on-p device structures
- •Selective doping of SiC using selective epitaxial trench refill process
- •Device processing (metallization, RIE etching and lithography)
- •High temperature silane/argon annealing of ion implantation layers

Previous Relevant Accomplishments

- Demonstrated thick (>60 μm) epitaxial layers of 4H-SiC on 4H-SiC substrates with doping concentration less than 2x10¹⁴cm⁻³, and surface roughness less than 0.25nm over 2umx2um area
- Demonstrated state of the art p-n junction devices on in-house grown layers
- Demonstrated selective growth process for trench refilling of partially processed wafers
- Wafer polishing process for damage-free material removal

Contact Information

Ishwara Bhat & T. Paul Chow

ECSE Department

Rensselaer Polytechnic Institute

110 8th Street , JEC6003

Troy, NY 12180-3590

Phone: 518-276-2786; Fax: 518-276-6261

Email: bhati@rpi.edu

RPI Facilities

Figure 1 Vertical hot Wall reactor at RPI being used at 1630C. The reactor can handle two 2-inch diameter substrates. At right is the gas cabinet and the reactor chamber of horizontal SiC reactor.

Epitaxial Growth of Thick SiC

Figure 2 A two inch diameter 60um thick SiC epitaxial film grown on 4H-SiC substrate with growth rate of 15um/hr. The figures above show the camera photograph, an optical microscope image and AFM image illustrating the excellent quality of the films. The AFM surface roughness was 0.21nm over a 2umx2um area. The background doping is less than 5x10¹⁴cm⁻³.

2" wafer, HW57B (61μm/4hours)	
Spot	Doping (cm ⁻³)
1	3.2×10^{14}
2	2.5×10^{14}
3	4.6×10 ¹⁴
4	3.5×10 ¹⁴
5	4.5×10 ¹⁴

Average ~500ns on 60μm thick layer (HW57). Doping variation over a 2-inch dia wafer

Thick Epi for Device Fabrication

All epi-layers grown (RPI) on N⁺ 4H-SiC substrates (CREE), and processed at RPI.

Figure 3 Thick epi process for device fabricaiton. EMC conference, June 2004

Selective Growth of SiC

Selective doping of SiC using selective growth. Less damage compared to ion implantation.

Mask (no growth)

epi refill

Selectively Grown n-on-p Devices

Refilled Square PN diode: L=250µm epi refill

n+ implantation

Refill epi n 5e16cm⁻³ 1.5µm

P epi 1e16cm⁻³ 12μm

P⁺ substrate

Selectively Grown n-on-p Device Characteristics

Figure 4 I-V data of epi refilled pn junction diodes. Diodes of variable window width and mask width are used in the fabrication. For example, 2-2-250 indicates window width of $2\mu m$, masked width of $2\mu m$ and overall area of $250\mu m$ x $250\mu m$. FA-250 means no fingers (see figure 1). Diode area: $6.2X10^{-4}$ cm⁻². The I-V data are similar to the I-V data of mesa etched diodes.